US009229787B2

a2 United States Patent

Fiebig et al.

US 9,229,787 B2
Jan. 5, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(30)

Dec. 13, 2012

(1)

(52)

(58)

METHOD AND SYSTEM FOR PROPAGATING
MODIFICATION OPERATIONS IN
SERVICE-ORIENTED ARCHITECTURE

Applicant: SOFTWARE AG, Darmstadt (DE)

Inventors: Thorsten Fiebig, Mannheim (DE);
Daniel Adelhardt, Bockhorn (DE);

Gary Woods, Seeheim (DE)

Assignee: SOFTWARE AG, Darmstadt (DE)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 330 days.

Appl. No.: 13/782,363

Filed: Mar. 1, 2013

Prior Publication Data

US 2014/0173633 Al Jun. 19, 2014

Foreign Application Priority Data

(EP) 12196917

Int. Cl1.
GO6F 3/00
GO6F 9/44
GO6F 9/46
GO6F 13/00
GO6F 9/52
GO6F 21/62

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2013.01)

GOGF 9/52 (2013.01); GOGF 21/6218
(2013.01); GO6F 2221/2145 (2013.01)

Field of Classification Search

None
See application file for complete search history.

i Determine user
! . permissions

1001 TN
-~ Permissions ™.,
><_sufficient? .~
L
~
i Yes
1002

Perform |
i permission

e

(56) References Cited
U.S. PATENT DOCUMENTS
5,335,346 A 8/1994 Fabbio
7,076,557 B1* 7/2006 LaMacchiaetal. ........ 709/229
7,512,578 B2* 3/2009 Abnousetal. ............... 706/47
2005/0096966 Al* 52005 Adietal. ... 705/10
2006/0294051 Al* 12/2006 Kapadiaetal. . 707/1
2006/0294578 Al* 12/2006 Burkeetal. ................ 726/2
2007/0038979 Al*  2/2007 Oral .....cccceevvenne GOG6F 9/4426
717/108
2007/0174031 Al* 7/2007 Levenshteynetal. .......... 703/13
(Continued)
FOREIGN PATENT DOCUMENTS
WO 2005/064429 7/2005
WO 2008/046888 4/2008
OTHER PUBLICATIONS

Curbera, Component Contracts in Service-Oriented Architectures,
IEEE 2007, pp. 74-80.*

(Continued)

Primary Examiner — Diem Cao
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

Certain example embodiments relate to techniques for propa-
gating modification operations for Service-oriented Architec-
ture (SOA) objects in a SOA. The SOA includes at least two
SOA objects that are connected by at least one relationship
that defines one SOA object as referencing SOA object and
another SOA object as referenced SOA object. Steps of an
appropriate may include: receiving a request for propagating
a modification operation from the referencing SOA object to
the referenced SOA object; evaluating at least one propaga-
tion rule to determine whether the requested modification can
be performed on the referenced SOA object; and if it is
determined that the requested modification cannot be per-
formed in accordance with the at least one propagation rule,
evaluating at least one approval rule to determine whether the
requested modification can be performed on the referenced
SOA object.

19 Claims, 3 Drawing Sheets

s

No | |
S Initiate approval]

b

Continue with
1 approver |
| permissions |

v propagation

1003




US 9,229,787 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2007/0255685 Al

2009/0024652 Al
2010/0125618 Al*

11/2007 Boult et al.

1/2009 Thompson
5/2010 Dutta ......cccocevrvnnnnn. GOGF 8/10
707/822

OTHER PUBLICATIONS

[Online], Wikipedia Search—Service-oriented architecture, http://
en.wikipedia.org/wikiService-oriented_ architecture, printed Feb.
26, 2013, 20 pages.

[Online], Wikipedia Search—SOA governance, http://en.wikipedia.
org/wiki/SOA_governance, printed Feb. 26, 2013, 3 pages.

[Online], Websphere Service Registry and Repository, IBM, http://
www-01.ibm.com/software/integration/wsst/, printed Feb. 26,2013,
2 pages.

[Online], HP SOA Systinet, HP, HP Sofiware, http://www8.hp.com/
us/en/software-solutions/software html?compURI=1173936,
printed Feb. 26, 2013, 6 pages.

Reiner Kraft, “Designing a Distributed Access Control Processor for
Network Services on the Web,” ACM Workshop on XML Security,
Nov. 22, 2002.

Sushil Jajodia, “Flexible Support for Multiple Access Control
Polices,” ACM Transactions on Database Systems, vol. 26, No. 2,
Jun. 2001, pp. 214-260.

Microsoft—Windows Server, “How Permissions Work™ [retrieved
Jun. 25, 2013].

* cited by examiner



U.S. Patent Jan. 5,2016 Sheet 1 of 3 US 9,229,787 B2

Fig. 1

//1

Propagate permissions

T
DT
%\/ 32
composite
Asset A Asset B
10 30 20

Fig. 2

aggregate

Asset A Asset B




U.S. Patent Jan. 5,2016 Sheet 2 of 3 US 9,229,787 B2

Fig. 3

/2
Fred adds: (user bob, read)

34
/ Old ACL New ACL
Asset A {user fred,full) (user fred.full),
{user bob,read)

32

10/ aggregation \I\} ropagation fails

/’ Old AGL New AGL
30 Asset B {user ann, full) {user ann,full)

20



U.S. Patent

Determine user
¥ permissions

S

1001 -

e

<& Permissions

/\/\ sufficient? "
1002 T

Jan. 5§, 2016

Sheet 3 of 3

Fig. 4

No

>— Initiate approval

I

/ \

Q Approveol'7

\fy? \

US 9,229,787 B2

/3

2001

>-‘—>(Fax!ureij

2002
Perform Continue with™
permission approver
propagation permissions
2003
PN
1003 (\ End
Fig. 5
/ 4
Fred adds: {usgy bob, readd}
» 34
AT OdACL New AZL
Asset Al {user fred Sull {user e full}
{uger bob read}
10 aggregation i | Delegated propagation

. {Approver. ann}

\

A

30 Assei B

20

",

"1 Ol ACL

New ACL

36

{user znn, full

fusss ann fall),
{usss pob,rsady




US 9,229,787 B2

1
METHOD AND SYSTEM FOR PROPAGATING
MODIFICATION OPERATIONS IN
SERVICE-ORIENTED ARCHITECTURE

This application claims priority to EP 12 196 917 .4 filed 13
Dec. 2012, the entire content of which is hereby incorporated
by reference.

1. TECHNICAL FIELD

Certain example embodiments relate to a method and sys-
tem for propagating modification operations for Service-ori-
ented Architecture (SOA) objects in a SOA.

2. BACKGROUND AND SUMMARY

Service oriented architecture (SOA) is an architecture
paradigm for large and complex distributed computing sys-
tems. The paradigm allows for the development, operation
and control of complex distributed systems by splitting
monolithic applications into components, services, or other
SOA objects that can be re-used and orchestrated to get new
functionality on demand. SOA objects can be connected to
each other via relationships. Nowadays, complex systems are
set up, comprising a huge set of relationships. In addition to
SOA objects and relationships, a SOA typically comprises a
SOA registry for the management of SOA objects and their
dependencies. Further, SOA governance is responsible for
controlling correct operations in a SOA. Operations for
example comprise updating a composite relationship.

Those skilled in the art will appreciate that controlling (by
SOA governance) the correct operation of a large SOA-based
system is a complex and difficult task, while catastrophic
impacts on the overall SOA system can arise already if one
single service does not operate as expected. Given the high
frequency of changes to a typical SOA, it thus has to be
ensured that when a certain SOA object is updated or modi-
fied, all dependent SOA objects are updated as well in a
consistent manner. For example consider a SOA system that
operates a transfer system in a bank. If the referencing
(source) SOA object comprises the bank account of a client as
attribute and the account has been changed, the transfer might
still run with the referenced (target) SOA objects conducting
the transfer with obsolete bank information. In the worst case,
the transferred money is lost. Therefore, it is very important to
ensure that the various SOA objects of a complex SOA system
are consistent at any time.

Hence, various approaches have been proposed in the prior
art for controlling the correct operation of a SOA, i.e. to
ensure that all participants (such as services) in the SOA
operate as expected. These approaches for controlling the
correct operation of a SOA are commonly referred to as “SOA
governance” and include among others ensuring that all SOA
components interact properly in terms of communication pat-
terns, security rules, response times and/or other performance
characteristics (quality of services), ensuring that changing a
service does not impose unforeseen consequences on service
consumers (change management) and/or ensuring that ser-
vices evolve within the system only in a controlled manner
(lifecycle management).

U.S. Pat. No. 7,512,578 B2 discloses smart containers and
a definition to manage associated content without writing or
modifying application code. A smart container template can
represent a model including for example how items, such as
items of managed content become members of a composite
object of a type which the template is associated. A policy or

10

15

25

30

35

40

45

50

55

60

65

2

operation specified by the definition is applied to an item,
comprising the composite object, of the content.

U.S. Pat. No. 5,335,346 shows a system and method com-
prising an access control list for spanning across object
boundaries in an object oriented database. The access control
list further provides read and write access permissions and
execution semantics which apply to the execution of methods
in an object oriented database.

US patent application no. 2009/0024652 A1 discloses an
integration server system for mapping data objects on a data-
base schema. The system offers a strongly-typed model API,
complex constraint management and association balancing.
This system shows improved performance through optimized
handling of ordered associations of data object and of string-
valued attributes.

Further, US patent application no. 2007/0255685 Al
shows a method and system for modelling data providing a
constrained design space in which data is modelled. This
document discloses real world entities as objects within an
object table or data store. Real world entities may include for
example databases and rational links between entity objects.
Relationships can be defined in a separate link database or
table for referencing entity objects. This described represen-
tation of data to be modelled refers to an object hierarchy. The
constrained design space allows an improved adaptation of a
database in a format as one advantage.

U.S. Pat. No. 7,512,578 B2 discloses composite relation-
ships in the context of management systems. The other above-
discussed prior art approaches address a kind of system com-
prising objects, that may be connected with each other via
relationships in databases. However, these documents do not
concern service-oriented architectures with complex rela-
tionships between a vast amount of SOA objects. Therefore,
the above-described prior art lacks ways for ensuring the
consistency and security in a SOA system.

It is therefore the technical problem underlying certain
example embodiments to provide an approach to guarantee
the consistency of SOA objects in a SOA in a flexible and
useable way in that SOA governance remains unaffected,
thereby at least partly overcoming the above explained lack-
ing aspects of the prior art.

This problem is according to one aspect solved by amethod
for propagating modification operations for Service-oriented
Architecture (SOA) objects in a SOA, wherein the SOA com-
prises at least two SOA objects connected by at least one
relationship which defines one SOA object as referencing
SOA object and another SOA object as referenced SOA
object. In the embodiment of claim 1, the method comprises
the following steps:

a. receiving a request for propagating a modification opera-
tion from the referencing SOA object to the referenced
SOA object;

b. evaluating at least one propagation rule to determine
whether the requested modification can be performed on
the referenced SOA object;

c.if'it is determined that the requested modification cannot
be performed in accordance with the at least one propa-
gation rule, evaluating at least one approval rule to deter-
mine whether the requested modification can be per-
formed on the referenced SOA object.

Accordingly, the embodiment defines a method for propa-
gating modification operations between at least two con-
nected SOA objects. The at least two SOA objects are con-
nected by at least one relationship which defines one SOA
object as referencing SOA object and another SOA object as
referenced SOA object. Typically at least three types of rela-



US 9,229,787 B2

3

tionships can be considered: Simple association relationship,
aggregation relationship and composite relationship.

Importantly, whenever a request for propagating a modifi-
cation operation from the referencing SOA object to the ref-
erenced SOA object has been received (which may be trig-
gered automatically by the system each time the referencing
SOA object is modified), it has to be ensured, that the propa-
gation is possible using at least one propagation rule. Certain
example embodiments provide further rules for the case that
the requested modification cannot be performed in accor-
dance with the at least one propagation rule. In that case, the
at least one approval rule is essential for determining if the
requested modification can be performed on the referenced
SOA object. In other words, certain example embodiments
provide a way to consistently propagate a modification along
a relationship even though the associated propagation rule
does actually not allow said propagation. In this case, an
additional rule, namely the approval rule, is evaluated, and if
said approval rule confirms the propagation, the propagation
can eventually be performed. As a result, it is ensured that
modifications to SOA objects are always performed in a con-
sistent and secure manner in that they are correctly propa-
gated to all affected SOA objects.

In one aspect, the modification operation comprises chang-
ing at least one permission of the referencing SOA object,
updating the referencing SOA object and/or deleting the ref-
erencing SOA object. For example, the at least one permis-
sion may be aread and/or write permission assigned to at least
one user and/or application. In a further aspect, the modifica-
tion operation comprises updating and/or creating a new rela-
tionship.

Accordingly, various modification operations can be
propagated. Permissions may include read and/or write per-
missions and are for example assigned to at least one user.
Preferably, a user who has read and write permissions (i.e. full
permissions) is capable to change or update the SOA object.
For example the at least one permission can be changed or
updated on the referencing SOA object by the user with full
permissions. Other examples include updating attributes and/
or the lifecycle of the referencing SOA object and/or deleting
the referencing SOA object. Modification operations are not
just allowed for existing relationships, but also comprise
operations such as updating/and or creating a new relation-
ship.

In a further aspect, the at least two SOA objects are con-
nected by at least one composite relationship or aggregate
relationship.

In a further aspect, a new composite relationship is updated
and/or created and propagating a modification operation is
performed from the referencing SOA object to all referenced
SOA objects, comprising the new SOA relationship with at
least two SOA objects.

Considering composite relationships, such relationships
establish a kind of hierarchy with the at least one SOA object
referencing all other SOA objects. The referenced SOA
objects are dependent on the referencing SOA object. If the
referencing SOA object is updated according to a modifica-
tion operation, the operation is propagated to all other refer-
enced SOA objects in the hierarchy. Hence, updating the
referencing SOA object implies updating all referenced SOA
objects, including the SOA objects of the new relationship in
the hierarchy.

In yet another embodiment, the new SOA object, i.e. the
SOA object(s) affected by the new relationship, keeps the at
least one original modification operation and redundant
modification operations are removed. Accordingly, the
present method further ensures that the modification opera-

20

40

45

50

55

4

tions are propagated to the new SOA objects with the new
objects keeping the original modification operations, such as
permissions. In addition redundancies are removed that can
occur during propagating modification operations. This
removal of redundant modification operations may be
achieved via merging or alignment of SOA objects.

In a preferred embodiment, the at least one SOA objectis a
web service. As will be appreciated by the person skilled in
the art, the term “SOA object” as used herein generally refers
to a representation of a real computing entity, wherein such
representation is preferably stored in a SOA registry, e.g. in
the form of a WSDL definition.

SOA objects may comprise a set of attributes, including
simple attributes, classifications and/or relationship
attributes. Simple attributes for example have values like id,
name or version. Relationship attributes are already men-
tioned above, including the composite relationship as one
preferred embodiment. Further SOA objects may be defined
by distinct types comprising the type “web service”.

In a further embodiment, the requested modification can-
not be performed in accordance with the at least one propa-
gation rule if at least one user and/or application has no write
permission on the referencing SOA object.

As already explained further above the at least one user
with full permissions is able to update or even delete relation-
ships. In this case propagation of the modification operation
(update or delete) is possible. However, the user might have
only a read permission. In this case propagation cannot be
performed.

In an aspect, detecting that the requested modification can-
not be performed comprises:

Sending a message to a user and/or application; and/or

Storing a notification for being picked up by a user and/or

application

In a further aspect, the method further comprises creating a
log entry if the requested modification cannot be performed in
accordance with the at least one propagation rule.

In another aspect, evaluating at least one approval rule to
determine whether the requested modification can be per-
formed on the referenced SOA object comprises getting
approval from a user and/or application with read and write
permissions and delegating propagation of modification
operations from the user and/or application with a read per-
mission to the user and/or application with read and write
permissions.

Certain example embodiments include detecting that
propagation cannot be performed and storing these cases in a
log. In addition if'this is the case the at least one approval rule
is used to obtain approval preferably from a user with suffi-
cient permissions. Thereby propagation does not fail, but is
delegated from the user with insufficient permissions to a user
with sufficient permissions.

One advantage of certain example embodiments over the
prior art is the support of consistency at any time, with the
propagation of modification operations to referenced SOA
objects. Further, undesirable requests of users with insuffi-
cient permissions are prevented supporting security aspects
and in that case delegation of requests is even allowed
although the user has insufficient permissions by delegation.

In a preferred embodiment of the implementation, the at
least two SOA objects and/or the at least one relationship
and/or the at least one propagation rule and/or the at least one
approval rule are XML based and/or based on a domain
specific language (DSL).

Furthermore, certain example embodiments also provide a
computer program comprising instructions for implementing
any of the above-described methods.



US 9,229,787 B2

5

Certain example embodiments are also directed to a system
for propagating modification operations for Service-oriented
Architecture (SOA) objects in a SOA, wherein the SOA com-
prises at least two SOA objects which are connected by at
least one relationship, which defines one SOA object as ref-
erencing SOA object and another SOA object as referenced
SOA object, wherein the system comprises:

a. means for receiving a request for propagating a modifi-
cation operation from one the referencing SOA object to
the referenced SOA object;

b. means for evaluating at least one propagation rule to
determine whether the requested modification can be
performed on the referenced SOA object;

c. if it is determined that the requested modification cannot
be performed in accordance with the at least one propa-
gation rule, means for evaluating at least one approval
rule to determine whether the requested modification
can be performed on the referenced SOA object.

3. BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed description, presently preferred
embodiments are further described with reference to the fol-
lowing figures:

FIG. 1: A schematic diagram illustrating a method for
propagating modification operations from a referencing SOA
object to a referenced SOA object in a SOA, regarding a
composite relationship of SOA objects in one embodiment.

FIG. 2: A schematic diagram illustrating a method for
propagating modification operations from a referencing SOA
object to a referenced SOA object in a SOA, regarding an
aggregate relationship of SOA objects in one embodiment.

FIG. 3: A schematic representation of the method for
propagating modification operations when the propagation
cannot be performed, regarding an aggregate relationship of
SOA objects in one embodiment.

FIG. 4: A schematic diagram illustrating the workflow of
an approval rule after notice of a propagation failure.

FIG. 5: A schematic representation of the method for
propagating modification operations when the propagation
cannot be performed, but propagation can be performed on
the referenced SOA object after approval.

4. DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Type System and Method for Propagating Modification
Operations

In certain embodiments, an extensible type system is pro-
vided which comprises assets 10, 20 (ctf. FIGS. 1 and 2) and
asset 10, 20 types. One common type system may be a SOA
1 and assets 10, 20 may be also commonly referred to as SOA
objects 10, 20 and SOA object 10, 20 types.

Asset Types

A SOA registry manages the assets of a SOA 1 and their
dependencies. Assets 10, 20 can comprise a set of attributes
including simple attributes, classifications and/or relation-
ship 30 attributes. Simple attributes may hold simple values
like the asset id, asset name or asset version. The simple
attribute values may have primitive data types like String,
Date or Integer.

Classifications attributes can be used to classify assets 10,
20. A classification attribute preferably references a category
of a taxonomy managed in the registry/repository.

Assets can be connected via relationship 30 attributes. A
relationship attribute may reference one or more target assets.

10

15

20

25

30

40

45

55

65

6

In addition to attributes, assets can have a lifecycle state.
The lifecycle state is preferably taken from a lifecycle man-
aged within the registry/repository. In one embodiment, the
management of lifecycle states and/or lifecycle stages may be
performed in accordance with the teaching of European
patent No. 1 898 345 B1 of applicant, which is titled “System
for managing the lifecycle of a service oriented architecture”.

Every asset 10, 20 preferably has a type. The asset type
defines the asset attributes and their types. The attribute defi-
nition defines the name of the attribute and defines if an
attribute is optional, required or if it is a multi-value attribute.
The definition of a simple attribute provides the type of the
attribute value. The definition of a classification attribute
specifies from which taxonomies the categories for the
attribute values can be taken.

The definition of a relationship 30 attribute comprises the
possible types of assets that can be referenced. In addition the
relationship 30 attribute is classified to distinguish between
several types of relationships 30. In this embodiment we
assume at least:

Simple association relationship

Aggregation relationship

Composite relationship

A simple association relationship 30 just establishes an
association between two assets 10, 20. An aggregation rela-
tionship 30 indicates that associated asset belongs to the
referencing assets 10. A composite relation goes one step
further by requiring that the referenced assets 20 belongs to
the referencing assets 10 and that the existence of the refer-
enced asset 20 is bound to the existence of the referencing
asset 10. The purpose of composite relationships 30 is to
define composite assets 10, 20. A composite asset 10, 20
comprises a root asset that references other assets via com-
posite relationship attributes. The referenced assets 20 are
called components. The root asset and the components are
supposed to behave as a single asset. For example deleting the
root asset implies the deletion of all components.

Component assets can only directly belong to a single
composite asset. Nested composite assets can be created by
combining composite assets. The type restrictions given by an
asset type are enforced via dedicated rules or policies. The
policy based approach is more flexible than enforcing type
constraint via schema definitions. For example the policy
based approach supports assets in the registry/repository that
are not strictly fulfilling the type constraints. Such assets may
results from introducing type constraints on an existing set of
assets. For performance reasons the type constraint is not
supposed to be enforced on existing but on new assets.
Propagating a Modification Operation—Propagation Rules

To support effective design-time governance the SOA 1
registry/repository is preferably structured into organiza-
tions. The idea of defining organizational structure is not new,
but taken from standard SOA 1 data models, e.g., UDDI or
JAXR. An organization can represent real business units pro-
viding SOA objects such as SOA assets 10, 20. But organi-
zations can also be defined independently of a real world
business organization. An organization may have users 34,
groups and assets defined within the scope of the organiza-
tion.

To protect assets against unauthorized operations each
asset can comprise an ACL. The ACL entries grant permission
for reading or updating an asset to users 34, applications
and/or groups. A user with full permission is able to delete an
asset 10, 20 or to change its permissions. The owner or the
creator of an asset gets per default full permissions. During
the lifecycle of an asset the instance level permissions can be
extended to share the asset 10, 20 with other users 34 or



US 9,229,787 B2

7

groups. Granting instance level permissions on a composite
asset requires that the permissions are propagated from the
root asset to the component assets 1.

As shown in FIG. 1 and FIG. 2. certain example embodi-
ments provide a method for propagating a modification
operation (for example permission) 32 from the referencing
SOA object (as Asset A) 10 to the referenced SOA object
(Asset B) 20. The method of certain example embodiments
further includes propagation rules 1. For example propagat-
ing an operation 32 is performed when updating and/or cre-
ating a new relationship in one embodiment. The method for
propagation 32 is shown for composite and aggregate rela-
tionships 30, separately in FIG. 1 and FIG. 2.

Without the permission propagation there would be the risk
of getting inconsistent instance level permissions. For
example without propagation a user 34 could have full per-
missions on a root asset but not on all components (i.e. child
assets of the root asset). Due to this inconsistency the user 34
cannot delete the complete composite asset.

The permission propagation also needs to be performed on
an existing composite asset when adding an existing asset as
a new component. The new component might come with
instance level permissions that are different to those of the
composite asset. For adding a new component the user needs
to have the full permission on the composite asset. To ensure
that the user 34 is in full control of the resulting composite
asset he also must have the full permission on the component
he is adding. Because of the full permissions the user can
propagate the instance level permission of the composite
assets down to the new component. This propagation requires
a merge process for the instance level permission to ensure
that redundant permissions are removed. This strict align-
ment of instance level permissions ensures that the permis-
sions on the root asset are effective on the extended composite
asset.

The permissions of the new component are not propagated
to the composite asset to avoid that the permissions of the
composite asset are affected to heavily by just adding a new
component. The original instance level permissions of the
new component are kept to avoid breaking any existing rela-
tionships 30 pointing to the new component.

When establishing an aggregation relationship 30, as
exemplified in FIG. 2 between assets 10, 20 the permission
requirements are less restrictive. The user 34 that establishes
the new relationship 30 only needs update permissions on the
source assets 10 and read permissions on the target 20. Nev-
ertheless the permissions on the target should also be aligned
with the source of the aggregating relationship 30 to avoid
permission inconsistencies. For aggregated assets it is suffi-
cient that all read permissions of the source are propagated to
the target 20. This weak alignment of permissions ensures
that users 34 can at least read the full aggregated asset. The
propagation of read permissions is shown in FIG. 2.

Policy Based Exception Handling

The permission propagation rules described above may be
too restrictive for certain use cases. Therefore, the permission
aware type system needs to provide more flexibility, i.e. it
needs to allow deviations of the above rules. For example,
users 34 might not be in full control of the assets 10, con-
nected via an aggregation relationship 30. Therefore the
propagation of read permissions from the source 10 to the
target asset 20 might become a problem. This can be solved
by applying weak permission propagation rules. Weak propa-
gation means that instance level permissions assigned to the
source of an aggregate are not propagated to the target if the
user 34 does not have sufficient permissions. In the following,
a sample weak propagation will be described.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 3 shows an Asset A 10, referencing asset B 20 via an
aggregation relationship 30. Both assets 10, 20 have an access
control list (ACL) holding respective permissions. User Fred
wants to grant read permission to user Bob on asset A 10. The
read permission can be granted on asset A 10 by Fred, but it
cannot be granted on asset B 20. The reason is that Fred does
not have the full permission on asset B 20. Due to the weak
propagation the ACL of asset B 20 is not updated. The sample
2 shows a disadvantage of the weak propagation: Bob can
read asset A 10 but cannot read the referenced assets 20. The
big advantage of the delegated propagation is that permis-
sions can be assigned even if the permissions are not sufficient
to modify all ACLs of the involved assets. The weak concept
can also be applied for other operations like delete.

Exceptions or weak propagations need to be processed in a
controlled way to not bypass the SOA governance. For the
enforcement of the permission propagation rules we assume
policies being defined for the governance of association cre-
ation. These policies are fired whenever there is a new rela-
tionship 30 created, updated and/or deleted. Moreover a
policy may be triggered when instance level permissions are
propagated along a relationship 30 between two assets 10, 20.

The system comes in a preferred embodiment with a set of
default policies enforcing the default rules for permission
propagation and relationship 30 updates. To support the dif-
ferent types of relationship 30 attribute types there are difter-
ent sets of policies to implement the default behavior.

To gain flexibility these policies can be overwritten for
each asset 10, 20 type. Within an asset type itself the policies
can be overwritten for each relationship 30 attribute definition
separately. These policies can be specified in domain specific
languages (DSL) or they can be implemented with general
purpose languages like java or python. This allows triggering
arbitrary actions for the controlled exception processing.
Basic exception processing is to keep track of the exceptions
in an audit log. The next step is to send notifications whenever
there is an exception detected. These notifications can be
active or passive. Active means sending a message to a user 34
or a group of users. Passive means that the notification mes-
sage is just stored at a defined location waiting to be picked up
by recipient of the notification. One step further is the usage
of approval workflow triggering policies. This allows accept-
ing or rejecting exceptions from the type definitions by a
privileged user 36 or group.

Delegated Permission Propagation—Approval Rules

In certain embodiments, approval policies (also referred to
as approval rules) can be combined with impersonation to
implement delegated permission propagation 3. Delegated
permission propagation 3 means that if the triggering user 34
does not have sufficient permissions an approval policy is
triggered. The policy asks for the approval from a privileged
user 36 (note that the term “user” is to be understood herein as
a human user, an application, computer program, web ser-
vice, or the like). If the user 36 gives their approval the
permission propagation 32 is performed with the permissions
of the approving user 36. The process of the delegated per-
mission propagation 3 is shown by the following workflow of
an approval rule after notice of a propagation failure 32 in
FIG. 4.

In the first step 1001 of the process the permissions of the
user 34 are checked to find out if they are sufficient to perform
the permission propagation 32. If the permissions are suffi-
cient 1002 the propagation is performed 1003 with the per-
missions of the triggering user 34. If the permissions are not
sufficient an approval process is initiated 2001. Here the
approval 2002 from a more privileged group or user 36 is



US 9,229,787 B2

9

requested. If the approval is given the permission propagation
is performed 2003 with the permissions of the approving
group or user 36.

The delegated permission propagation 2 can be applied
whenever permission propagation 32 is needed. This includes
assigning instance level permissions to an asset 10, 20 and
creating or updating a composite or aggregating relationship
30. By applying delegated permission propagation 2 the strict
default permission requirements can be relaxed without
bypassing the governance. For example a user wants to add a
component to a composite asset but does not have full per-
missions on the composite asset 10, 20 or on the new com-
ponent. With the delegated permission propagation 2 the user
34 would be able to at least initiate or request the permission
propagation 32 from more privileged users 36. A correspond-
ing scenario for two assets 10, 20 connected by an aggrega-
tion relationship is shown in FIG. 5.

Here again Fred wants to grant read permission for Bob on
asset A 10. Since Fred does not have the permission to modify
asset B 20 the permission propagation 32 is delegated to Ann
36. Once Ann agrees to the requested propagation Bob also
gets the read permission on asset B 20.

Based on the policy based approach the delegated permis-
sion propagation 2 can be applied for a certain asset type 10,
20 or for a certain relationship within a type by just defining
a delegated permission propagation policy.

The policy based delegation concept is not limited to per-
mission propagation 32 but can also be applied for other
operations like deleting or updating composite assets.
Preferred Implementation

In an exemplary implementation a simple XML based rep-
resentation of assets and their type definitions is used. The
following XML listing shows a sample asset 10, 20 with the
name “Airport”.

<asset id="airport-asset-id”>
<name>Airport</name>
<type>web-service-type-id</type>
<relationship>
<type>has-interface-id</type>
<target>ab35- ...</target>
</relationship>
<relationship>
<type> binding-type-id</type>
<target>ab36- ...</target>
</relationship>
<relationship>
<type>import-schema-id</type>
<target>ab37- ...</target>
</relationship>
<fasset>

The name element holds the name of the asset. The id
attribute contains a global unique identifier (GUID). For read-
ability reasons a pseudo GUID is used here. The type element
references a type definition via its GUID. The relationship 30
element has a single type element and one or more target
elements. The type element references a relationship 30
attribute definition within the asset type definition. The target
element contains the GUID of the target asset. The type
definition for the sample asset 10, 20 is shown below:

<asset-type id="web-service-type-id”>
<name>Web Service</service>
<attributes>
<relationship id="has-interface-id”>
<name>hasInterface</name>

5

10

15

20

25

30

35

40

45

55

65

10

-continued

<type>Composite</type>
<target-type>interface-type-id</target-type>
<is-required>false</is-required>
<is-multiple>true<is-required>
</relationship>
<relationship id="has-binding-id”>
<name>hasBinding</name>
<type>Composite</type>
<target-type>binding-type-id</target-type>
<is-required>false</is-required>
<is-multiple>true<is-required>
</relationship>
<relationship id="import-schema-id”>
<name>importSchema</name>
<type>Aggregation</type>
<target-type>schema-type-id</target-type>
<is-required>false</is-required>
<is-multiple>true<is-required>
</relationship>
</attributes>
</asset-type>

The simplified XML defines a Web Service type. It has two
composite relationship 30 definitions referencing the Inter-
face asset 10, 20 type and the Binding asset 10, 20 type. Both
relationships 30 are optional, but can have multiple occur-
rences. In addition the Web Service type has an aggregation
relationship 30 referencing the Schema asset 10, 20 type. The
purpose of the relationship 30 is to associate a Web Service
asset 10, 20 with the asset 10, 20 representing the necessary
schema definitions. The policies for enforcing the type and
permission constraints can also be defined with XML. The
following sample shows a policy for performing the permis-
sion propagation 32 associated to the Web Service asset 10,
20 type definition.

<policy id="“permission-propagation-id”>
<name>Permission Propagation</name>

<scope>

<type>web-service-type-id</type>

<attribute>has-interface-id</attribute>

<attribute>has-binding-id</attribute>

</scope>

<events>

<event>Create</event>

<event>Update</event>

</events>

<actions>

<action type="“java’>PermissionPropagation</action>

</actions>
</policy>

The scope element defines to which type and which rela-
tionship 30 attribute the policy applies to. In this sample it
applies to both composite relationship 30 attributes of the
Web Service asset 10, 20 type. The events element defines the
events that trigger the policy. Here it is the Create and the
Update event. This means the policy is triggered whenever
there is a new composite relationship 30 added to a Web
Service asset 10, 20 or when an existing composite relation-
ship 30 is updated.

The policy contains a list of actions. The sample action
element references a java class that implements the action
performed by the policy. Beside java classes also python
scripts can be specified. The policy action referenced here
performs the propagation of the instance level permissions
from the composite asset to the newly added component. The
pseudo code of the policy action is shown by the following
listing.



US 9,229,787 B2

11

12

PermissionPropagationPolicy

{

boolean action(Relationship r, Context ¢)
{

User u = c.getUser( );

Asset trgt = r.getTarget( );
if(not(u.hasFullPermission(trgt)))
{

return false;

¥
Asset src = r.getSource( );
if(not(u.hasFullPermission(src)))

{
return false;
¥
propagatePermissions(u,src,trgt);
return true;
¥
void propagatePermissions(User u, Asset src, Asset trgt)
{

PermissionSet permissions = src.getPermissions( );
trgt.addPermissions(u, permissions);

The action checks if the user that is triggering the policy
has full permissions on the new component and on the com-
posite asset. If this is not the case the policy is failing. Oth-
erwise the action continues by adding the instance level per-
missions of the composite to the new component. Setting the
permissions on an asset needs to be authorized. Therefore the
user 34 is passed as a parameter to the addPermissions( )
function.

To ensure that a user with insufficient permission can trig-
ger the read permission propagation 32 when adding a
Schema asset to a Web Service asset a delegated permission
propagation 2 policy is needed. The policy looks as follows:

<policy id="read-permission-propagation-id...”>
<name>Read Permission Progation</name>
<scope>
<type>web-service-type-id</type>
<attribute> import-schema-id</attribute>
</scope>
<events>
<event>Create</event>
<event>Update</event>
<fevents>
<actions™>
<action type="java”>Initiate Approval</action>
<action type="java”>ReadPermission</action>
</actions>
</policy>

The action list of the policy starts with an action that
initiates an approval if the user 34 that triggers the policy does
not have sufficient permissions. The approving user 36 is
supposed to be an administrative user with sufficient privi-
leges. If the approval is successful the approving user is taken
to perform the second action.

To exchange user 34 information between policy actions
the policy context is used. Initially the triggering user is stored
in the policy context. The following sample code shows how
the user information is overwritten in the context if the
approval has been successfully performed.

10

15

25

30

40

45

50

55

60

65

InitiateApprovalPolicy

boolean action(Relationship r, Context ¢)

{

User u = c.getUser( );
if(not(u.hasFullPermission(r.getTarget( )))

Approval a =new Approval( );
a.start( );

if(a.isSuccessful( ))

{

User user = a.getApprovingUser( );
c.setUser(user);

}

else

return false;

The following pseudo code shows how the approving user
36 is taken from the policy context and how the read permis-
sions are propagated to the target of the relationship 30.

ReadPermissionPropagationPolicy

boolean action(Relationship r, Context ¢)
{
User u = c.getUser( );
PermissionSet permissions = r.getSrc( ).getReadPermission( );
Asset root = src.getRootAsset( );
root.addReadPermissions(u, permissions);
}
¥

The sample has shown how the delegated permission
propagation 32 can be implemented with simple policies
attached to asset type definitions. The policies defined here
delegate read permission to a new component. Other kind of
permission propagations can be implemented in a similar
way.

It will be appreciated that as used herein, the terms system,
subsystem, service, engine, module, programmed logic cir-
cuitry, and the like may be implemented as any suitable com-
bination of software, hardware, firmware, and/or the like. It
also will be appreciated that the storage locations herein may
be any suitable combination of disk drive devices, memory
locations, solid state drives, CD-ROMs, DVDs, tape backups,
storage area network (SAN) systems, and/or any other appro-
priate tangible non-transitory computer readable storage
medium. Cloud and/or distributed storage (e.g., using file
sharing means), for instance, also may be used in certain
example embodiments. It also will be appreciated that the
techniques described herein may be accomplished by having
at least one processor execute instructions that may be tangi-
bly stored on a non-transitory computer readable storage
medium. For instance, a SOA may include processing
resources including, for example, one or more processors, a
memory, disk or other transitory or non-transitory storage,
etc., which may be configured to cooperate in executing a
method of the type disclosed herein.

While the invention has been described in connection with
what is presently considered to be the most practical and
preferred embodiment, it is to be understood that the inven-
tion is not to be limited to the disclosed embodiment, but on
the contrary, is intended to cover various modifications and
equivalent arrangements included within the spirit and scope
of'the appended claims.



US 9,229,787 B2

13
What is claimed is:
1. A method for propagating modification operations for
Service-oriented Architecture (SOA) objects in a SOA,
wherein the SOA comprises at least two SOA objects con-
nected by at least one relationship that defines one SOA
object as referencing SOA object and another SOA object as
referenced SOA object, the method comprising:
receiving a request for propagating a modification opera-
tion from the referencing SOA object to the referenced
SOA object;

evaluating at least one propagation rule to determine, based
upon the at least one propagation rule and aspects of the
referenced SOA object, whether the requested modifi-
cation can be performed on the referenced SOA object;

determining, using at least one processor, that the
requested modification cannot be performed in accor-
dance with the at least one propagation rule; and

in response to the determination that the requested modi-

fication cannot be performed in accordance with the at
least one propagation rule, evaluating at least one
approval rule to determine whether the requested modi-
fication can be performed on the referenced SOA object,
and modifying, in a memory associated with the at least
one processor, the referenced SOA object in accordance
with the requested modification and based on the at least
one approval rule,

wherein the evaluating at least one approval rule to deter-

mine whether the requested modification can be per-
formed on the referenced SOA object comprises access-
ing the at least one approval rule in a SOA registry,
wherein the at least one rule is associated in the SOA
registry with a type of the referenced SOA object.

2. The method of claim 1, wherein the modification opera-
tion comprises changing at least one permission of the refer-
encing SOA object, updating the referencing SOA object
and/or deleting the referencing SOA object.

3. The method of claim 2, wherein the at least one permis-
sion is a read and/or write permission assigned to at least one
user and/or application.

4. The method of claim 1, wherein the modification opera-
tion is in accordance with updating a relationship and/or
creating a new relationship.

5. The method of claim 1, wherein the at least one relation-
ship connecting the two SOA objects includes at least one
composite relationship or at least one aggregate relationship.

6. The method of claim 4, wherein a composite relationship
is updated and/or a new composite relationship is created and
propagating a modification operation is performed from the
referencing SOA object to all referenced SOA objects.

7. The method of claim 6, wherein the new composite
relationship references a new SOA object, and wherein the
new SOA object keeps the at least one original modification
operation and redundant modification operations are
removed.

8. The method of claim 1, wherein the at least one of the
SOA objects is a web service.

9. The method of claim 1, wherein the requested modifi-
cation cannot be performed on the referenced SOA object in
accordance with the at least one propagation rule if at least
one user and/or application has no write permission on the
referencing SOA object.

10. The method of claim 1, wherein detecting that the
requested modification cannot be performed comprises:

sending a message to a user and/or application; and/or

storing a notification for being picked up by the user and/or
the application.

10

15

20

25

30

35

40

45

50

55

60

65

14

11. The method of claim 1, further comprising creating a
log entry if the requested modification cannot be performed in
accordance with the at least one propagation rule.

12. The method of claim 1, wherein evaluating at least one
approval rule to determine whether the requested modifica-
tion can be performed on the referenced SOA object com-
prises:

getting approval, in accordance with the at least one

approval rule, from a second user and/or application
with read and write permissions to the referenced SOA
object; and

delegating propagation of modification operations from a

first user and/or application with a read permission, to
the second user and/or application with read and write
permissions.
13. A method of claim 1, wherein any one or more of the at
least two SOA objects, the at least one relationship, the at least
one propagation rule, and the at least one approval rule are
XML based and/or based on a domain specific language
(DSL).
14. A non-transitory computer readable storage medium
tangibly storing a computer program comprising instructions
for implementing a method in accordance with claim 1.
15. A system for propagating modification operations for
Service-oriented Architecture (SOA) objects in a SOA,
wherein the SOA comprises at least two SOA objects that are
connected by at least one relationship that defines one SOA
object as referencing SOA object and another SOA object as
referenced SOA object, wherein the system comprises at least
one processor configured to perform operations comprising:
receiving a request for propagating a modification opera-
tion from the referencing SOA object to the referenced
SOA object;

evaluating at least one propagation rule to determine, based
upon the at least one propagation rule and aspects of the
referenced SOA object, whether the requested modifi-
cation can be performed on the referenced SOA object;
and

ifitis determined that the requested modification cannot be

performed in accordance with the at least one propaga-
tion rule, evaluating at least one approval rule to deter-
mine whether the requested modification can be per-
formed on the referenced SOA object, and modifying, in
a memory associated with the at least one processor, the
referenced SOA in accordance with the requested modi-
fication and based on the at least one approval rule,
wherein the evaluating at least one approval rule to deter-
mine whether the requested modification can be per-
formed on the referenced SOA object comprises access-
ing the at least one approval rule in a SOA registry,
wherein the at least one rule is associated in the SOA
registry with a type of the referenced SOA object.

16. The system of claim 15, wherein a composite relation-
ship is updated and/or a new composite relationship is created
and propagating a modification operation is performed from
the referencing SOA object to all referenced SOA objects.

17. The system of claim 16, wherein the new composite
relationship references a new SOA object, and wherein the
new SOA object keeps the at least one original modification
operation and redundant modification operations are
removed.

18. A system for propagating modification operations for
Service-oriented Architecture (SOA) objects in a SOA,
wherein the SOA comprises at least two SOA objects that are
connected by at least one relationship that defines one SOA
object as referencing SOA object and another SOA object as
referenced SOA object, wherein the system comprises:



US 9,229,787 B2
15

processing resources including at least one processor and a
memory that cooperate in order to at least:

receive a request for propagating a modification operation
from the referencing SOA object to the referenced SOA
object; 5

evaluate at least one propagation rule and aspects of the
referenced SOA object to determine whether the
requested modification can be performed on the refer-
enced SOA object; and

ifitis determined that the requested modification cannotbe 10
performed in accordance with the at least one propaga-
tion rule, accessing the at least one approval rule in a
SOA registry, evaluating the at least one approval rule to
determine whether the requested modification can be
performed on the referenced SOA object, and modifying 15
the referenced SOA in the memory in accordance with
the requested modification and based on the at least one
approval rule, wherein the at least one rule is associated
in the SOA registry with a type of the referenced SOA
object. 20

19. The method of claim 1, wherein the at least one propa-

gation rule and the at least one approval rule are XML based
and/or based on a domain specific language (DSL).

#* #* #* #* #*



